Knots and Random Walks in Vibrated Granular Chains

Eli Ben-Naim
Los Alamos National Laboratory

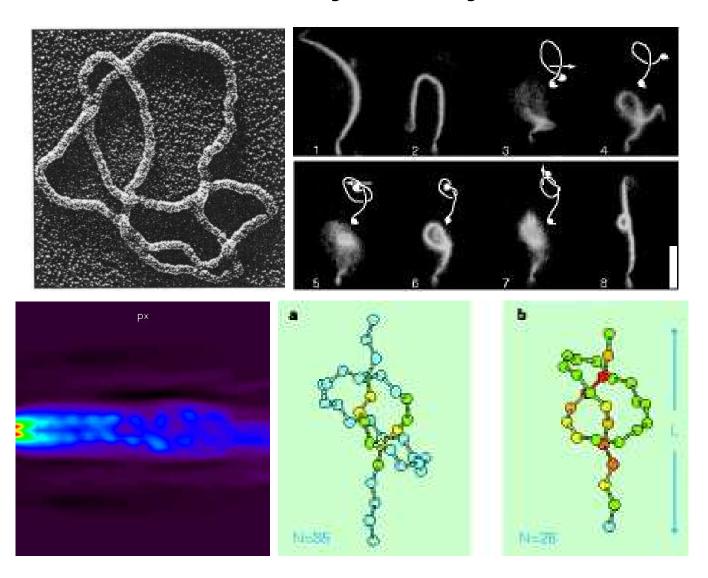
Zahir Daya (Los Alamos)
Aaron Lauda (UC Riverside)
Peter Vorobieff (New Mexico)
Robert Ecke (Los Alamos)

Phys. Rev. Lett. 86, 1414 (2001)

Plan

- **I** Knots
- II Vibrated Knot Experiment
- III Diffusion Theory
- IV Experiment vs Theory
- V Conclusions & Outlook

Knots in Physical Systems



Knots in DNA strands Wang JMB 71

Tying a microtubule with optical twizzers Itoh, Nature 99

Knotted jets in accretion disks (MHD) F Thomsen 99

Strain on knot (MD) Wasserman, Nature 99

Knots & Topological Constraints

Knots happen

Whittington JCP 88

probability(no knot) $\sim \exp(-N/N_0)$

- Knots tighten $(T=\infty)$ Sommer JPA 92
 - $n/N \to 0$ when $N \to \infty$
- Reduce size of chain (m = knot complexity)

$$R \sim N^{\nu} m^{-\alpha}$$
 $\alpha = \nu - 1/3$

- Reduce accessible phase space
- Large relaxation times de Gennes, Edwards

$$au_{reptation} \sim N^3$$

- Weaken macromolecule
- Bio: affect chemistry, function

Granular Chains

Mechanical analog of bead-spring model

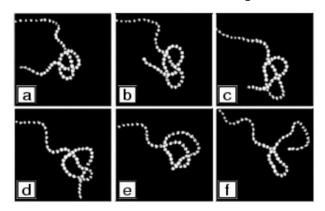
$$U(\{\mathbf{R}_i\}) = v_0 \sum_{i \neq j} \delta(\mathbf{R}_i - \mathbf{R}_j) + \frac{3}{2b^2} \sum_i (\mathbf{R}_i - \mathbf{R}_{i+1})^2$$

- Beads/rods interact via hard core repulsions
- Rods act as springs (nonlinear, dissipative)
- Inelastic collisions: bead-bead, bead-plate
- Vibrating plate supplies energy
- Athermal, nonequilibrium driving

Advantages

- Number of beads can be controlled
- Topological constraints: can be prepared, observed directly

Vibrated Knot Experiment

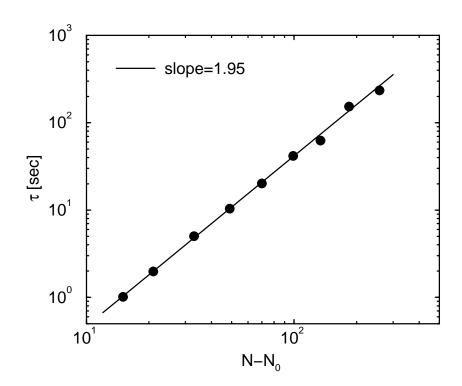


- t = 0: trefoil knot placed at chain center
- Parameters
- Number of monomers: 30 < N < 270
- Minimal knot size: $N_0 = 15$
- Driving conditions
- Frequency: $\nu = 13Hz$
- Acceleration: $\Gamma = A\omega^2/g = 3.4$

Only measurement: opening time t

- 1. Average opening time $\tau(N)$?
- 2. Survival probability S(t, N)? Distribution of opening times R(t, N)?

The Average Opening Time



Average over 400 independent measurements

$$\tau(N) \sim (N - N_0)^{\nu}$$
 $\nu = 2.0 \pm 0.1$

Opening time is diffusive

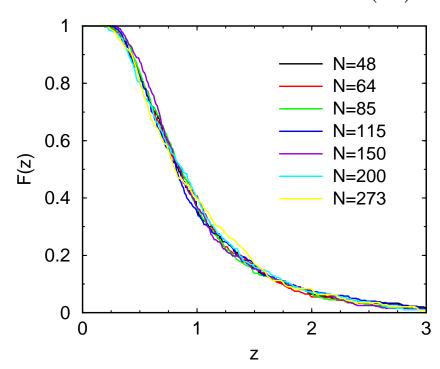
The Survival Probability

- S(t,N) Probability knot "alive" at time t
- ullet R(t,N) Probability knot opens at time t

$$S(t, N) = 1 - \int_0^t dt' R(t', N)$$

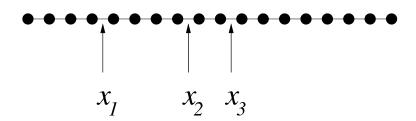
• S(t, N) obeys scaling

$$S(t,N) = F(z)$$
 $z = \frac{t}{\tau(N)}$



 τ only relevant time scale

Theoretical Model



Assumptions

- Knot \equiv 3 exclusion points
- Points hop randomly
- Points move independently (no correlation)
- Points are equivalent (size = $N_0/3$)

3 Random Walk Model

- 1D walks with excluded volume interaction
- first point reaches boundary → knot opens

Diffusion in 3D

$$1 < x_1 < x_2 < x_3 < N - N_0 \longrightarrow 0 < x < y < z < 1$$
$$\frac{\partial}{\partial t} P(x, y, z, t) = \nabla^2 P(x, y, z, t)$$

Boundary conditions

Absorbing:
$$P|_{x=0} = P|_{z=1} = 0$$

Reflecting:
$$(\partial_x - \partial_y)P|_{x=y} = (\partial_y - \partial_z)P|_{y=z} = 0$$

- Initial conditions $P\big|_{t=0} = \delta(x-x_0)\delta(y-x_0)\delta(z-x_0)$
- Survival probability

$$S_3(t) = \int_0^1 dx \int_x^1 dy \int_y^1 dz \ P(x, y, z, t)$$

3 walks in 1D \equiv 1 walk in 3D

Product Solution

Product of 1D solutions

$$P(x, y, z, t) = 3! p(x, t) p(y, t) p(z, t)$$

- 1D case $p|_{x=0} = p|_{x=1} = 0$ $p|_{t=0} = \delta(x x_0)$ $p_t(x,t) = p_{xx}(x,t)$
- 1 walk survival probability $s(t) = \int_0^1 dx \, p(x,t)$

$$s(t) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin[(2k+1)\pi x_0]}{2k+1} e^{-(2k+1)^2 \pi^2 t}$$

m interacting walks survival probability

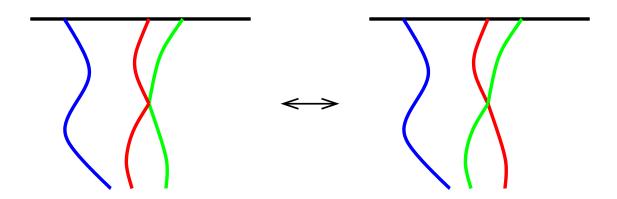
$$S_m(t) = [s(t)]^m$$

Average opening time

$$\langle t \rangle \simeq \tau_m \frac{(N - N_0)^2}{D} \qquad \tau_3 = 0.056213$$

Reduced to noninteracting problem

Alternative Derivation

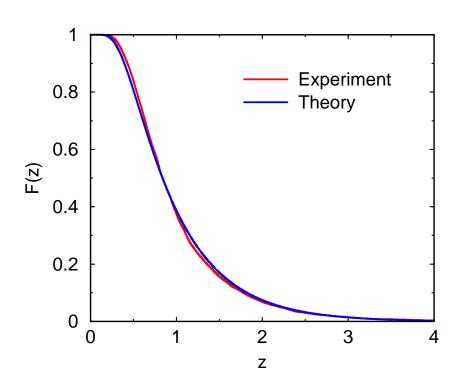


Exchange identities of walkers when paths cross

Experiment vs. Theory

- Work with scaling variable $z = t/\tau \ (\langle z \rangle = 1)$
- Combine different data sets (6000 pts)
- Fluctuations $\sigma^2 = \langle z^2 \rangle \langle z \rangle^2$

$$\sigma_{\rm exp} = 0.62(1)$$
, $\sigma_{\rm theory} = 0.63047~(< 2\%)$



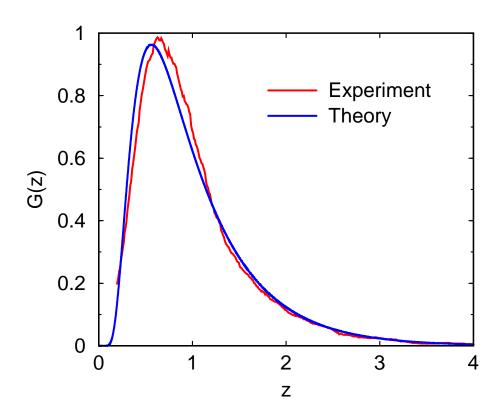
No fitting parameters!

Excellent quantitative agreement

The Exit Time Probability

Scaling function

$$R(t,N) = \frac{1}{\tau}G(z)$$
 $z = \frac{t}{\tau(N)}$
$$G(z) = -\frac{d}{dz}F(z)$$



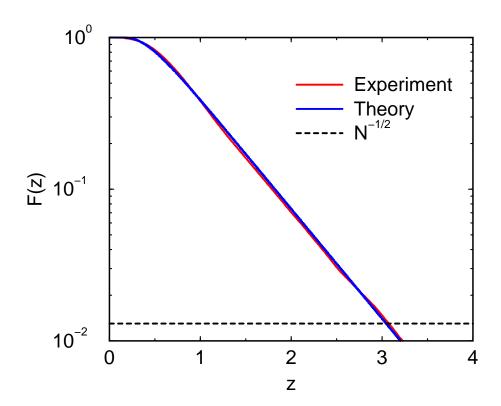
Large Exit Times

- Largest decay time dominates
- Large time tail is exponentially small

$$F(z) \sim e^{-\beta z}$$
 $z \gg 1$

• Decay coefficient $\beta = m\pi^2 \tau_m$

$$\beta_{\text{exp}} = 1.65(2)$$
 $\beta_{\text{theory}} = 1.66440$ (1%)



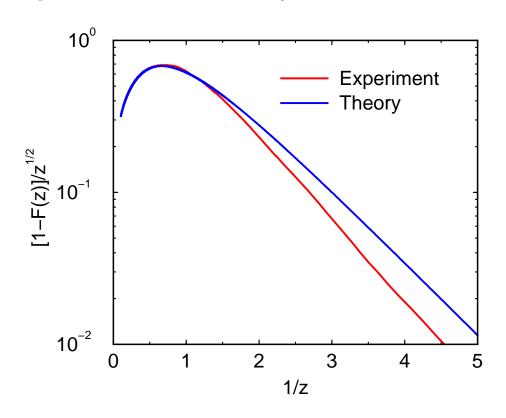
Small Exit Times

• Exponentially small (in 1/z) tail

$$1 - F(z) \sim z^{1/2} e^{-\alpha/z}$$
 $z \ll 1$

• Decay coefficient $\alpha = 1/16\tau_m$

$$\alpha_{\rm exp} = 1.2(1)$$
 $\alpha_{\rm theory} = 1.11184$ (10%)



Larger discrepancy

Heuristic Argument (short times)

Use scaling form

$$S(t,N) \sim F\left(\frac{t}{N^2}\right)$$

• Smallest exit time $t = \frac{N}{2}$, $1 - S \sim 2^{-N/2}$

$$1 - F\left(\frac{2}{N}\right) \sim e^{-\alpha N} \qquad N \to \infty$$

 $1 - F(z) \sim e^{-\alpha/z} \qquad z \to 0$

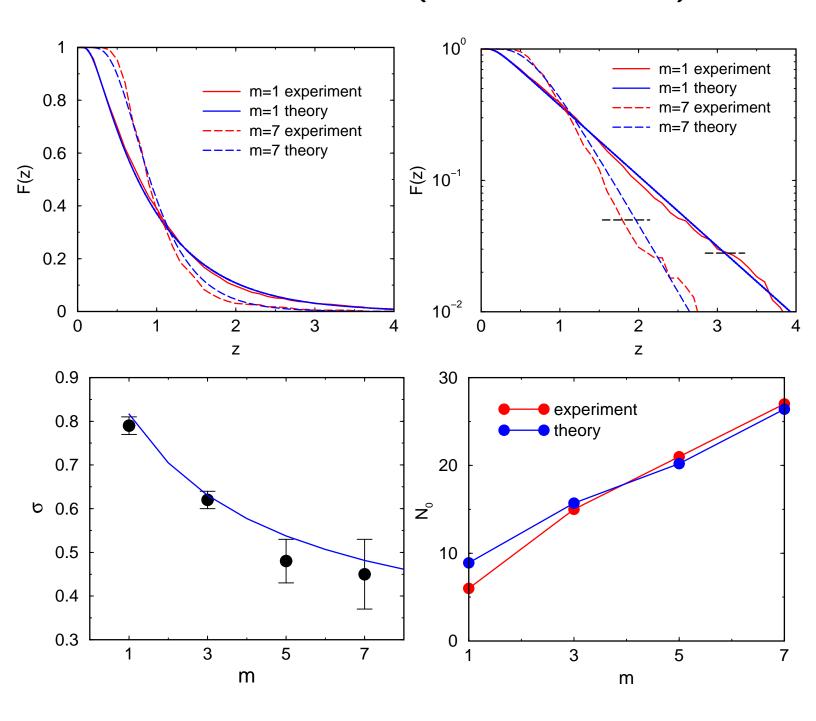
 \bullet Analytic calculation: Laplace transform of s(t) + steepest descent

$$1 - F(z) \sim z^{1/2} e^{-\alpha/z}$$

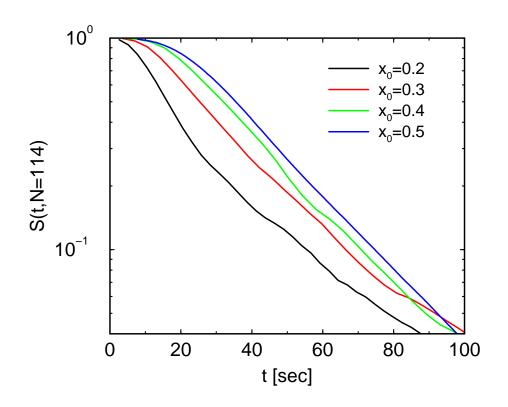
• Complex knots: $e^{-1/t} \sim m^{-1}$

$$au \sim \sigma \sim \frac{1}{\ln m}$$
 $m \gg 1$

Different knots (m = 1, 3, 5, 7)



Off-Center Initial Conditions



Decay coefficient independent of x_0

$$S_m(t) \simeq A(x_0)e^{-m\pi^2t}$$

Eventually, initial conditions are forgotten

Knots Opening & the Gambler Ruin Problem

The exit probability

$$\nabla^2 E(x_1, \dots, x_d) = 0$$

- Linear in 1D: $E(x_0) = x_0$
- In general dimension $d \equiv m$

$$E(x_0) \sim (x_0)^d \qquad x_0 \ll 1$$

• The average exit time

$$D\nabla^2 T(x_1, \dots, x_d) = -1$$

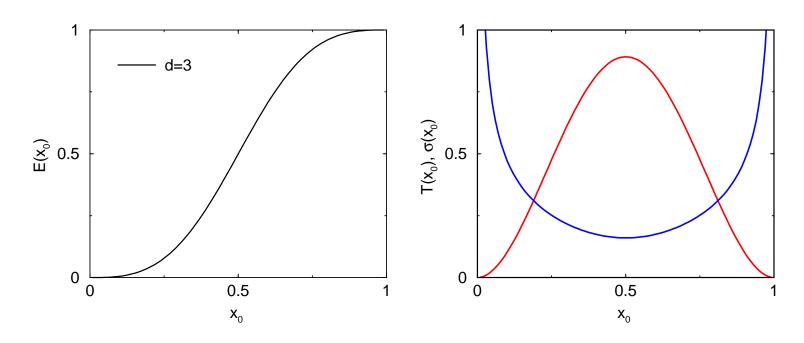
General solution

$$E(x_0) = \frac{d}{2} \left(\frac{4}{\pi}\right)^d \sum_{k_1=1}^{\infty} \sum_{k_2=0}^{\infty} \cdots \sum_{k_d=0}^{\infty} \frac{(-1)^{k_1-1} k_1 \sin[k_1 \pi x_0]}{k_1^2 + \sum_{i=2}^d (2k_i + 1)^2} \prod_{i=2}^d \frac{\sin[(2k_i + 1)\pi x_0]}{(2k_i + 1)}$$

$$T(x_0) = \frac{1}{\pi^2} \left(\frac{4}{\pi}\right) \sum_{k_1=0}^{\infty} \cdots \sum_{k_d=0}^{\infty} \frac{1}{\sum_{i=1}^{d} (2k_i+1)^2} \prod_{i=1}^{d} \frac{\sin[(2k_i+1)\pi x_0]}{(2k_i+1)}$$

Knot opening \equiv 3 gamblers ruin problem with fixed wealth hierarchy

Predictions



- ullet Good agreement for S(t), $S_{
 m far}(t)$, $S_{
 m close}(t)$
- Poor agreement for $E(x_0)$, $T(x_0)$
- Current data insufficient (600pts)

Fluctuations diverge near boundary

Conclusions

- Knot governed by 3 exclusion points
- Exponential tails (large & small exit times)
- Macroscopic observables (t, S(t)) reveals details of a topological constraint
- Knot relaxation governed by number of crossing points
- Athermal driving, yet, effective degrees of freedom randomized

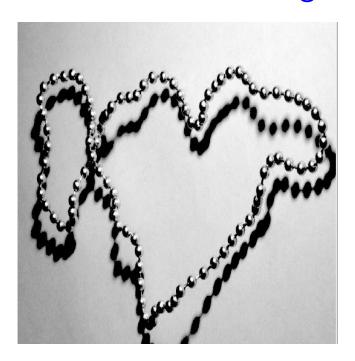
Outlook

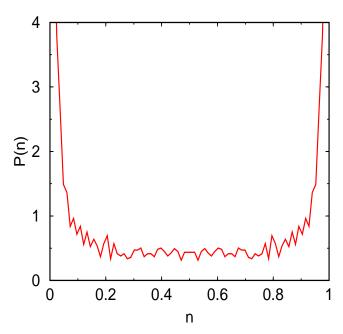
- Different knot types
- Correlation between crossing points

Many possibilities with granular chains

Entropic Tightening

with Matthew Hastings, Zahir Daya, Robert Ecke





Equilibrium (counting states) prediction

$$P(n) \propto [n(N-n)]^{-d/2}$$
 $n/N \to 0 \quad when \quad N \to \infty$

Observed under nonequilibrium driving

Role of entropy?

Johnathan McKay

My soul is an entangled knot Upon a liquid vortex wrought The secret of its untying In four-dimensional space is lying

J. C. Maxwell